Rotation

Type:Rotation
Range:[SO(3)]
Default:-/-
Appearance:optional

The Rotation parameter defines a coordinate transformation applied to the NonLinearSusceptibility tensor. We define the rotation matrix \TField{R} which transforms the laboratory frame (the internal coordinate system of the linear JCM-fieldbag) to the crystal’s principal axis system (crystalline coordinates). For example of second-order nonlinear process, the NonLinearPolarization in laboratory frame is defined as:

\begin{alignat*}{1}
\TField{p}^{(2)} & = \TField{R}^{-1} \TField{p}^{(2)'},
\end{alignat*}

where

\begin{alignat*}{1}
\TField{p}^{(2)'}_i & = \epsilon_0 \sum_{j,k} \chi_{ijk}(\TField{R}\TField{E}^{1})_{j}(\TField{R}\TField{E}^{2})_{k}
\end{alignat*}

is the NonLinearPolarization in crystalline coordinates, and \TField{E}^{1} and \TField{E}^{2} are the computed linear fields.