DifferentialEvolutionOptimization¶
Purpose¶
The purpose of the driver is to identify a parameter vector that minimizes the value of an objective function . The search domain is bounded by box constraints for and may be subject to several constraints such that only if (see create_study()
).
The driver uses the heuristic evolutionary approach to search globally for a minimum of the objective function. We recommend to use Bayesian optimization to search globally for a minimum. Only if the evaluation times of the objective function are very short (smaller than 1-3 seconds) it can be beneficial to use differential evolution.
The implementation of the driver is based on the open source implementation of scipy (see https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html).
Usage Example¶
import sys,os
import numpy as np
import time
sys.path.append(os.path.join(os.getenv('JCMROOT'), 'ThirdPartySupport', 'Python'))
import jcmwave
client = jcmwave.optimizer.client()
# Definition of the search domain
domain = [
{'name': 'x1', 'type': 'continuous', 'domain': (-1.5,1.5)},
{'name': 'x2', 'type': 'continuous', 'domain': (-1.5,1.5)},
{'name': 'radius', 'type': 'fixed', 'domain': 2},
]
# Definition of a constraint on the search domain
constraints = [
{'name': 'circle', 'constraint': 'sqrt(x1^2 + x2^2) - radius'}
]
# Creation of the study object with study_id 'DifferentialEvolutionOptimization_example'
study = client.create_study(domain=domain, constraints=constraints,
driver="DifferentialEvolutionOptimization",
name="DifferentialEvolutionOptimization example",
study_id='DifferentialEvolutionOptimization_example')
# Definition of a simple analytic objective function.
# Typically, the objective value is derived from a FEM simulation
# using jcmwave.solve(...)
def objective(**kwargs):
time.sleep(2) # makes objective expensive
observation = study.new_observation()
x1,x2 = kwargs['x1'], kwargs['x2']
observation.add(10*2
+ (x1**2-10*np.cos(2*np.pi*x1))
+ (x2**2-10*np.cos(2*np.pi*x2))
)
return observation
# Set study parameters
study.set_parameters(max_iter=80, num_parallel=2)
# Run the minimization
study.set_objective(objective)
study.run()
info = study.info()
print('Minimum value {:.3f} found for:'.format(info['min_objective']))
for param,value in info['min_params'].items():
if param == 'x4': print(' {}={}'.format(param,value))
else: print(' {}={:.3f}'.format(param,value))
Parameters¶
The following parameters can be set by calling, e.g.
study.set_parameters(example_parameter1 = [1,2,3], example_parameter2 = True)
max_iter (int): | Maximum number of evaluations of the objective function (default: inf) |
---|
max_time (int): | Maximum run time in seconds (default: inf) |
---|
num_parallel (int): | |
---|---|
Number of parallel observations of the objective function (default: 1) |
eps (float): | Stopping criterium. Minimum distance in the parameter space to the currently known minimum (default: 0.0) |
---|
min_val (float): | |
---|---|
Stopping criterium. Minimum value of the objective function (default: -inf) |
num_initial (int): | |
---|---|
Number of independent initial optimizers (default: 1) |
max_num_minimizers (int): | |
---|---|
If a minimizer has converged, it is restarted at another position. If max_num_minimizers threads have converged, the optimization is stopped (default: inf) |
sobol_sequence (bool): | |
---|---|
If true, all initial samples are taken from a Sobol sequence. This typically improves the coverage of the parameter space. (default: True) |
popsize_multiplier (int): | |
---|---|
A multiplier for setting the total population size. The population has popsize * len(x) individuals. (default: 15) |
tol (float): | The optimizer stops when the mean of the population energies (objective function values), multiplied by tol is larger than the standard deviation of the population energies. (default: 0.0) |
---|
strategy (str): | The differential evolution strategy to use. (default: best1bin) (options: [‘best1bin’, ‘best1exp’, ‘rand1exp’, ‘randtobest1exp’, ‘best2exp’, ‘rand2exp’, ‘randtobest1bin’, ‘best2bin’, ‘rand2bin’, ‘rand1bin’]) |
---|
mutation (float or tuple (min,max)): | |
---|---|
Controls the mutation constant also known as differential weight, being denoted by F.If specified as a float it should be in the range [0, 2]. If specified as a tuple (min, max) dithering is employed. Dithering randomly changes the mutation constant on a generation by generation basis. The mutation constant for that generation is taken from U[min, max). Dithering can help speed convergence significantly. Increasing the mutation constant increases the search radius, but will slow down convergence. (default: (0.5, 1)) |
recombination (float): | |
---|---|
The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability. (default: 0.7) |