MirrorSymmetry

Type:Vector<enum>
Range:[v_1, …], v=ElectricSymmetric|MagneticSymmetric
Default:-/-
Appearance:optional

In this presence of mirror symmetries it is required to specify the field behavior of the symmetric resonance mode across any mirror planes. A mirror plane is characterized by its normal vector \pvec{n}. For type ElectricSymmetric the electric field is polarized within the mirror plane and the magnetic field is perpendicular to the mirror plane:

\begin{eqnarray*}
\pvec{n} \cdot \VField{E} & = & 0,\;\mbox{(electric symmetric)}, \\
\pvec{n} \times \VField{H} & = & 0,\;\mbox{(magnetic anti symmetric)}.
\end{eqnarray*}

For type MagneticSymmetric we have

\begin{eqnarray*}
\pvec{n} \times \VField{E} & = & 0,\;\mbox{(electric anti-symmetric)}, \\
\pvec{n} \cdot \VField{H} & = & 0,\;\mbox{(magnetic symmetric)}.
\end{eqnarray*}

For multiple mirror planes you must specify all individual mirror symmetry types in a vector. Thereby, the mirror planes (maximum three planes) are ordered by the following convention: A mirror plane with normal \pvec{n} comes before another mirror plane with normal \pvec{n'}

  • |n_z|<|n'_z|, or
  • \left( |n_z|=|n'_z|\;\mbox{and}\; |n_y|<|n'_y| \right), or
  • \left( |n_z|=|n'_z|\;\mbox{and}\;|n_y|=|n'_y|\;\mbox{and}\;n_x<n'_x\right)

Note

The mirror planes together with their normals and ordering are shown within JCMsuite.